CHAPTER 14

Derivation of State Graphs and Tables

Contents

14.1 Design of a Sequence Detector

14.2 More Complex Design Problems
14.3 Guidelines for Construction of State Graphs
14.4 Serial Data Code Conversion
14.5 Alphanumeric State Graph Notation

Objectives

1. Given a problem statement for the design of a Mealy or Moore sequential circuit, find the corresponding state graph and table.
2. Explain the significance of each state in your graph or table in terms of the input sequences required to reach that state.
3. Check your state graph using appropriate input sequences.

14.1 Design of a Sequence Detector

Fig 14.1 Sequence Detector to be Designed

c	Clock															
X	$=$	0	0	1	1	0	1	1	0	0	1	0	1	0	1	0
0																
$\mathrm{Z}=$	0	0	0	0	0	1	0	0	0	0	0	1	0	1	0	0
(time:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	$15)$

14.1 Design of a Sequence Detector

Fig 14.2 and 14.3 : Formation of State Graph

14.1 Design of a Sequence Detector

Fig 14.4 Mealy State Graph for Sequence Detector

14.1 Design of a Sequence Detector

Table 14-1, State Table

$*$ Present state	Next State		Present	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$	0	0
$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	0	0
$\mathrm{~S}_{2}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$	0	1

Table 14-2, Transition Table with State Assignment

	$\mathrm{A}^{+} \mathrm{B}^{+}$		Z	
AB	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
00	00	01	0	0
01	10	01	0	0
10	00	01	0	1

14.1 Design of a Sequence Detector

Map for the output function Z (from table 1,2)

14.1 Design of a Sequence Detector

Fig 14.5: Final Circuit

14.1 Design of a Sequence Detector

Moore Machine Design Process

14.1 Design of a Sequence Detector

Fig 14.6 Moore State Graph for Sequence Detector

14.1 Design of a Sequence Detector

Table 14-3 State Table
Table 14-4 Transition Table with State assignment

Present state	Next State		Present
	$\mathrm{X}=0$	$\mathrm{X}=1$	Output (Z)
S_{0}	$\mathrm{~S}_{0}$	$\mathrm{~S}_{1}$	0
$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	0
$\mathrm{~S}_{2}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{3}$	0
$\mathrm{~S}_{3}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	1

	$\mathrm{A}^{+} \mathrm{B}^{+}$		
	$\mathrm{X}=0$	$\mathrm{X}=1$	Z
00	00	01	0
01	11	01	0
11	00	10	0
10	11	01	1

14.2 More Complex Design Problems

The circuit to be designed (Mealy)
Output $Z=1$ if input sequence ends in either 010 or 1001

```
X=}\begin{array}{llllllllllllllllllllll}{0}&{0}&{1}&{0}&{1}&{0}&{0}&{1}&{0}&{0}&{0}&{1}&{0}&{0}&{1}&{1}&{0}
Z= lllllllllllllllllllll
```


14.2 More Complex Design Problems

Fig 14.7 formation of state graph (step1)

state	sequence received
S_{0}	reset
S_{1}	0
$\mathrm{~S}_{2}$	01
$\mathrm{~S}_{3}$	010

14.2 More Complex Design Problems

Fig 14.8 formation of state graph (step2)

state	sequence ends in
S_{0}	reset
S_{1}	$0($ but not 10$)$
S_{2}	01
$\mathrm{~S}_{3}$	10
$\mathrm{~S}_{4}$	1 (but not 01$)$
S_{5}	100

14.2 More Complex Design Problems

Fig 14.9 Completed State Graph for a Sequence Detector to be Designed

14.2 More Complex Design Problems

The circuit to be designed (Moore)
Output $Z=1$ if the total number of 1 's received is odd and at least two consecutive 0's have been received

$\mathrm{X}=$	1	0	1	1	0	0	1	1
	\uparrow			\uparrow		\uparrow	\uparrow	\uparrow
	a			b		C	d	e
$\mathrm{Z}=$	(0)	0	0	0	0	0	1	0

14.2 More Complex Design Problems

Fig 14.10 formation of state graph (step 1)

14.2 More Complex Design Problems

Fig 14.11 formation of state graph (step2)

state	sequence received
S_{0}	reset or even 1's
S_{1}	odd 1's
S_{2}	even 1's and ends in 0
S_{3}	even 1's and 00 has occurred
S_{4}	00 has occurred and odd 1's

14.2 More Complex Design Problems

Fig 14.12 Completed State Graph for a Sequence Detector to be Designed

14.3 Guidelines for Construction of State Graphs

1. Construct some sample input and output sequences to make sure that you understand the problem statement.
2. Determine under what conditions ,if any, the circuit should reset to its initial state.
3. If only one or two sequences lead to a non-zero output, a good way to start is to construct a partial state graph for those sequences.
4. Determine what sequences or groups of sequences must be remembered by the circuit and set up states accordingly.
5. Each time you add an arrow to the state graph, determine it can go to one of the previously defined states or whether a new state must be added
6. Check your state graph to make sure there is one and only one path leaving each state for each combination of values of the input variables
7. When your state graph is complete, test it by applying the input sequences formulated in part1 and making sure the output sequences are correct

14.3 Guidelines for Construction of State Graphs

Example 1:Z=1 when input sequence 0101 or 1001 occurs.
The circuit resets after every four inputs. Mealy Circuit

> A typical sequence of input and output

$\mathrm{X}=$	0101	0010	1001	0100
$\mathrm{Z}=$	0001	0000	0001	0000

14.3 Guidelines for Construction of State Graphs

Fig 14.13 Partial State Graph for Example 1

state	sequence received
S_{0}	Reset
S_{1}	0
$\mathrm{~S}_{2}$	1
$\mathrm{~S}_{3}$	01 or 10
$\mathrm{~S}_{4}$	010 or 100

14.3 Guidelines for Construction of State Graphs

Fig 14.14 Complete State Graph for Example 1

state	sequence received
S_{0}	Reset
S_{1}	0
$\mathrm{~S}_{2}$	1
$\mathrm{~S}_{3}$	01 or 10
$\mathrm{~S}_{4}$	010 or 100
$\mathrm{~S}_{5}$	two inputs received, no 1
$\mathrm{~S}_{6}$	output is possible
	three inputs received, no 1
	output is possible

14.3 Guidelines for Construction of State Graphs

Example $2: \mathrm{Z1}=1$ every time the input sequence 100 is completed $Z 2=1$ every time the input sequence 010 is completed Once $Z 2=1$ occurred, $Z 1=1$ can never occur but not vice versa Mealy circuit

A typical sequence of input and output

| X |
| :--- |$=1$| | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 0 |
| :--- |
| 0 | |

14.3 Guidelines for Construction of State Graphs

Fig 14.15 Partial Graphs for Example 2

(a)

(b)

14.3 Guidelines for Construction of State Graphs

Table 14-5 State Descriptions for Example 2

stats	Description		
S_{0}	No progress on 100	No progress on 010	
$\mathrm{~S}_{1}$	Progress of 1 on 100	No progress on 010	
$\mathrm{~S}_{2}$	Progress of 10 on 100	Progress of 0 on 010	010 has never occurred
S_{3}	No progress on 100	Progress of 0 on 010	
$\mathrm{~S}_{4}$	Progress of 10 on 100	Progress of 01 on 010	
$\mathrm{~S}_{5}$		Progress of 0 on 010	
$\mathrm{~S}_{6}$		Progress of 01 on 010	010 has occurred
S_{7}		No progress on 010	

14.3 Guidelines for Construction of State Graphs

Fig 14.16 State Graphs for Example 2

(a) Partial graph for 010

(b) Complete state graph

14.3 Guidelines for Construction of State Graphs

Table 14-6

Present state	Next $\mathrm{X}=0$	State $\mathrm{X}=1$	Output $\mathrm{X}=0$	$\left(\mathrm{Z}_{1} \mathrm{Z}_{2}\right)$ $\mathrm{X}=1$
$\mathrm{~S}_{0}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{1}$	00	00
$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	00	00
$\mathrm{~S}_{2}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	10	00
$\mathrm{~S}_{3}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{4}$	00	00
$\mathrm{~S}_{4}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{1}$	01	00
$\mathrm{~S}_{5}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{6}$	00	00
$\mathrm{~S}_{6}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{7}$	01	00
$\mathrm{~S}_{7}$	$\mathrm{~S}_{5}$	$\mathrm{~S}_{7}$	00	00

14.3 Guidelines for Construction of State Graphs

Example 3: Two inputs - X1, X2, One output - Z
(a) The input sequence $X 1 \times 2=01,11$ cause the output 0
(b) The input sequence $X 1 \times 2=10$, 11 cause the output 1
(c) The input sequence $\mathrm{X} 1 \times 2=10,01$ cause the output to change

Previous Input $\left(\mathrm{X}_{1} \mathrm{X}_{2}\right)$	Output (Z)	State Designation
00 or 11	0	$\mathrm{~S}_{0}$
00 or 11	1	$\mathrm{~S}_{1}$
01	0	$\mathrm{~S}_{2}$
01	1	$\mathrm{~S}_{3}$
10	0	$\mathrm{~S}_{4}$
10	1	$\mathrm{~S}_{5}$

14.3 Guidelines for Construction of State Graphs

Table 14-7

Present				Next state			
State	Z	$\mathrm{X}_{1} \mathrm{X}_{2}$	$=$	00	01	11	10
$\mathrm{~S}_{0}$	0			$\mathrm{~S}_{0}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{4}$
$\mathrm{~S}_{1}$	1			$\mathrm{~S}_{1}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{5}$
$\mathrm{~S}_{2}$	0			$\mathrm{~S}_{0}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{4}$
$\mathrm{~S}_{3}$	1			$\mathrm{~S}_{1}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{5}$
$\mathrm{~S}_{4}$	0			$\mathrm{~S}_{0}$	$\mathrm{~S}_{3}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{4}$
$\mathrm{~S}_{5}$	1			$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{5}$

14.3 Guidelines for Construction of State Graphs

Fig 14-17 State Graph for Example 3

14.4 Serial Data Code Conversion

Fig 14.18 Serial Data Transmission

(a)

(b)

14.4 Serial Data Code Conversion

Fig 14.19 Coding Schemes for Serial Data Transmission

14.4 Serial Data Code Conversion

Fig 14.20 Mealy circuit for NRZ to Manchester Conversion

(a) Conversion network

(b) Timing chart

14.4 Serial Data Code Conversion

Fig 14.20 Sequence Detector to be Designed

(c) State graph

Present	Next State		Output (Z)	
State	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
S_{0}	S_{1}	S_{2}	0	1
S_{1}	S_{0}	-	1	-
S_{2}	-	S_{0}	-	0

(d) State table

14.4 Serial Data Code Conversion

Fig 14.21 Moore Circuit for NRZ-to-Manchester Conversion

(a) Timing chart

14.4 Serial Data Code Conversion

Fig 14.21 Moore Circuit for NRZ-to-Manchester Conversion

(b) State graph

Present	Next State		Present
State	$\mathrm{X}=0$	$\mathrm{X}=1$	Output (Z)
S_{0}	$\mathrm{~S}_{1}$	$\mathrm{~S}_{3}$	0
$\mathrm{~S}_{1}$	$\mathrm{~S}_{2}$	-	0
$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{3}$	1
$\mathrm{~S}_{3}$	-	S_{0}	1

(c) State table

14.5 Alphanumeric State Graph Notation

Fig 14.22 State Graphs with Variable Names on Arc Labels

14.5 Alphanumeric State Graph Notation

Table 14-8 State Table for Fig 14-22

PS	NS					Output		
	$\mathrm{FR}=$	00	01	10	11	Z_{1}	Z_{2}	Z_{3}
$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{1}$	1	0	0	
$\mathrm{~S}_{1}$		$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{2}$	0	1	0
$\mathrm{~S}_{2}$	$\mathrm{~S}_{2}$	$\mathrm{~S}_{1}$	$\mathrm{~S}_{0}$	$\mathrm{~S}_{0}$	0	0	1	

The result : $\quad F+F^{\prime} R+F^{\prime} R^{\prime}=F+F^{\prime}=1$

If we AND together every possible pair of arc labels emanating from S_{0}, we get

$$
F \cdot F^{\prime} R=0, \quad F \cdot F^{\prime} R^{\prime}=0, \quad F^{\prime} R \cdot F^{\prime} R^{\prime}=0
$$

