CHAPTER 14

Derivation of State Graphs and Tables

Contents

- 14.1 Design of a Sequence Detector
- 14.2 More Complex Design Problems
- 14.3 Guidelines for Construction of State Graphs
- 14.4 Serial Data Code Conversion
- 14.5 Alphanumeric State Graph Notation

Objectives

- 1. Given a problem statement for the design of a Mealy or Moore sequential circuit, find the corresponding state graph and table.
- 2. Explain the significance of each state in your graph or table in terms of the input sequences required to reach that state.
- 3. Check your state graph using appropriate input sequences.

Fig 14.1 Sequence Detector to be Designed

Fig 14.2 and 14.3 : Formation of State Graph

Fig 14.4 Mealy State Graph for Sequence Detector

Table 14-1, Stat	еT	able			
				Pres	sent
Present		Next	State	Out	tput
state		X = 0	X = 1	$\mathbf{X} = 0$	X =1
\mathbf{S}_{0}		S ₀	\mathbf{S}_1	0	0
\mathbf{S}_1		S ₂	\mathbf{S}_1	0	0
S_2		S ₀	\mathbf{S}_1	0	1
Table 14-2, Tran	sitio	on Table wit	th State As	signment	
		A+	B^+	2	Z
AB		X = 0	X = 1	X = 0	X =1
00		00	01	0	0
01		10	01	0	0
10		00	01	0	1

Map for the output function Z (from table 1,2)

Fig 14.5: Final Circuit

Moore Machine Design Process

Fig 14.6 Moore State Graph for Sequence Detector

Table 14-3 State Table

Table 14-4 Transition Table with State assignment

Present	Next	State	Present		A+	B^+	
state	X = 0	$\mathbf{X} = 1$	Output (Z)	AB	X = 0	X = 1	Ζ
S ₀	S ₀	\mathbf{S}_1	0	00	00	01	0
S ₁	S ₂	\mathbf{S}_1	0	01	11	01	0
S ₂	S ₀	S ₃	0	11	00	10	0
S ₃	S ₂	\mathbf{S}_1	1	10	11	01	1

The circuit to be designed (Mealy) Output Z=1 if input sequence ends in either 010 or 1001

X=	0	0	1	0	1	0	0	1	0	0	0	1	0	0	1	1	0
				\uparrow		\uparrow		\uparrow	\uparrow				\uparrow		\uparrow		
				а		b		с	d				e		f		
Z=	0	0	0	1	0	1	0	1	1	0	0	0	1	0	1	0	0

Fig 14.7 formation of state graph (step1)

state	sequence received
S ₀	reset
\mathbf{S}_1	0
\mathbf{S}_2	01
S_3	010

Fig 14.8 formation of state graph (step2)

state	sequence ends in
\mathbf{S}_0	reset
\mathbf{S}_1	0 (but not 10)
\mathbf{S}_2	01
S ₃	10
S_4	1 (but not 01)
S_5	100

Fig 14.9 Completed State Graph for a Sequence Detector to be Designed

state	sequence ends in
\mathbf{S}_{0}	reset
\mathbf{S}_1	0 (but not 10)
\mathbf{S}_2	01
S ₃	10
S_4	1 (but not 01)
S_5	100

The circuit to be designed (Moore)

Output Z=1 if the total number of 1's received is odd and at least two consecutive 0's have been received

X=	1	0	1	1	0	0	1	1	
	\uparrow			\uparrow		\uparrow	Ţ	\uparrow	
	a			b		c	d	e	
Z=	(0)	0	0	0	0	0	1	0	1

Fig 14.10 formation of state graph (step1)

Fig 14.11 formation of state graph (step2)

state	sequence received
S ₀	reset or even 1's
S_1	odd 1's
S ₂	even 1's and ends in 0
S ₃	even 1's and 00 has occurred
S_4	00 has occurred and odd 1's

Fig 14.12 Completed State Graph for a Sequence Detector to be Designed

state	Input sequences
S ₀	reset or even 1's
S_1	odd 1's
S_2	even 1's and ends in 0
S ₃	even 1's and 00 has occurred
S_4	odd 1's and 00 has occurred
S_5	odd 1's and ends in 0

- 1. Construct some sample input and output sequences to make sure that you understand the problem statement.
- 2. Determine under what conditions , if any, the circuit should reset to its initial state.
- 3. If only one or two sequences lead to a non-zero output, a good way to start is to construct a partial state graph for those sequences.
- 4. Determine what sequences or groups of sequences must be remembered by the circuit and set up states accordingly.
- 5. Each time you add an arrow to the state graph, determine it can go to one of the previously defined states or whether a new state must be added
- 6. Check your state graph to make sure there is one and only one path leaving each state for each combination of values of the input variables
- 7. When your state graph is complete, test it by applying the input sequences formulated in part1 and making sure the output sequences are correct

Example 1 : Z=1 when input sequence 0101 or 1001 occurs.

The circuit resets after every four inputs. Mealy Circuit

A typical				
X –	0101	0010	1001	0100
A –	0101	0010	1001	0100
Z =	0001	0000	0001	0000

Fig 14.13 Partial State Graph for Example 1

state	sequence received
S_0	Reset
\mathbf{S}_1	0
S_2	1
S ₃	01 or 10
S_4	010 or 100

Fig 14.14 Complete State Graph for Example 1

Example 2 : Z1=1 every time the input sequence 100 is completed Z2=1 every time the input sequence 010 is completed Once Z2=1 occurred, Z1=1 can never occur but not vice versa Mealy circuit

 A typical sequence of input and output

 X
 =
 1
 0
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 1
 0
 0
 0
 0
 0
 1
 0
 1
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 1
 0
 1
 0
 1
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Fig 14.15 Partial Graphs for Example 2

Table 14–5 State Descriptions for Example 2

stats	Descr		
S ₀	No progress on 100	No progress on 010	
\mathbf{S}_1	Progress of 1 on 100	No progress on 010	
S_2	Progress of 10 on 100	Progress of 0 on 010	010 has never occurred
S_3	No progress on 100	Progress of 0 on 010	
\mathbf{S}_{4}^{J}	Progress of 10 on 100	Progress of 01 on 010	
S		Progress of 0 on 010	
S ₆		Progress of 01 on 010	010 has occurred
S_7		No progress on 010	

Fig 14.16 State Graphs for Example 2

Table 14-6

Present	Next	State	Output	$(Z_1 Z_2)$
state	X = 0	X = 1	X = 0	X = 1
S ₀	S ₃	\mathbf{S}_1	00	00
S ₁	S ₂	\mathbf{S}_1	00	00
S ₂	S ₃	S_4	10	00
S ₃	S ₃	S_4	00	00
S ₄	S ₅	\mathbf{S}_1	01	00
S ₅	S ₅	S_6	00	00
S ₆	S ₅	\mathbf{S}_7	01	00
S ₇	S ₅	\mathbf{S}_7	00	00

Example 3: Two inputs – X1, X2, One output – Z

- (a) The input sequence X1X2=01, 11 cause the output 0
- (b) The input sequence X1X2=10, 11 cause the output 1
- (c) The input sequence X1X2=10, 01 cause the output to change

Previous Input (X ₁ X ₂)	Output (Z)	State Designation
00 or 11	0	S ₀
00 or 11	1	\mathbf{S}_1
01	0	S_2
01	1	S ₃
10	0	S_4
10	1	S_5

Table 14-7

Present		Next state					
State	Z	X_1X_2	=	00	01	11	10
S ₀	0			S ₀	S_2	S ₀	S ₄
\mathbf{S}_1	1			\mathbf{S}_1	S ₃	\mathbf{S}_1	S_5
S_2	0			\mathbf{S}_0	S_2	S_0	\mathbf{S}_4
S ₃	1			\mathbf{S}_1	S ₃	S_0	S_5
S_4	0			S_0	S ₃	\mathbf{S}_1	\mathbf{S}_4
S ₅	1			\mathbf{S}_1	S_2	\mathbf{S}_1	S_5

Fig 14-17 State Graph for Example 3

Fig 14.18 Serial Data Transmission

Fig 14.19 Coding Schemes for Serial Data Transmission

Fig 14.20 Mealy circuit for NRZ to Manchester Conversion

Fig 14.20 Sequence Detector to be Designed

\bigcirc	Present	Present Next State		Output (Z)	
1/ 000000	State	X = 0	X = 1	$\mathbf{X} = 0$	X = 1
	S ₀	S ₁	\mathbf{S}_2	0	1
	\mathbf{S}_1	S ₀	-	1	-
(s_2)	S ₂	-	\mathbf{S}_{0}	-	0
(c) State graph		(d) Sta	te table		

Fig 14.21 Moore Circuit for NRZ-to-Manchester Conversion

Fig 14.21 Moore Circuit for NRZ-to-Manchester Conversion

Present	Ne	ext State	Present			
State	$\mathbf{X} = 0$	X = 1	Output (Z)			
S ₀	S ₁	S ₃	0			
\mathbf{S}_1	S ₂	-	0			
S ₂	S ₁	S ₃	1			
S ₃	-	S_0	1			
(c) State table						

14.5 Alphanumeric State Graph Notation

Fig 14.22 State Graphs with Variable Names on Arc Labels

14.5 Alphanumeric State Graph Notation

Table 14-8 State Table for Fig 14-22

PS	NS				Output			
	FR =	00	01	10	11	Z_1	Z_2	Z ₃
S ₀		S_0	S_2	\mathbf{S}_1	\mathbf{S}_1	1	0	0
\mathbf{S}_1		\mathbf{S}_1	S_0	S_2	S_2	0	1	0
S_2		S_2	\mathbf{S}_1	S_0	\mathbf{S}_{0}	0	0	1
						_		

The result : F + F'R + F'R' = F + F' = 1

If we AND together every possible pair of arc labels emanating from S_0 , we get $F \cdot F'R = 0$, $F \cdot F'R' = 0$, $F'R \cdot F'R' = 0$,